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A multi-domain approach for the solution of the equations of 

elasticity in two spatial dimensions is presented. The equations of 

momentum conservation and the stress-strain relations are recast as a 
system of five coupled equations in time in which the particle velocities 

and the stresses are the unknowns. Solution schemes for both 2D 
Cartesian and polar coordinates are derived. In both cases the solution 

is assumed periodic in one coordinate (the x or 8 directions) and non- 
periodic in the other direction. The numerical algorithm uses a Fourier 

expansion in the periodic direction and domain decomposition and a 

modified Chebyshev expansion in the remaining direction. The multi- 
domain approach is tested against problems with known solutions. In 

all cases it appears as accurate as solutions with a single domain. The 

multi-domain concept adds flexibility and improves efficiency. It allows 
use of different grid sizes in different regions depending on the material 

properties and allows a relatively uniform grid spacing in the polar coor- 

dinate case. 0 1992 Academic Press. Inc 

INTRODUCTION 

We introduce a multi-domain spectral method for the 
solution of the equations of dynamic elasticity. Multi- 
domain approaches for solving partial differential equations 
have found wide use in computational physics in situations 
where a single global expansion is no longer adequate ( [ 11, 
for a review). In the problems tackled in this study, the 
reasons for the multi-domain approach have either been a 

change in the governing equations in the domains when 
fluid regions and solid regions are in juxtaposition, or 
geometrical considerations. 

This work involves elastic wave propagation in two 
spatial dimensions in the context of exploration geophysics. 
We first examine solutions in Cartesian coordinates where 
one coordinate points in the vertical direction and the other 
in the horizontal direction. Due to this configuration we 
used a Fourier expansion for the horizontal direction and a 
modified Chebyshev expansion for the vertical direction 
[2, 31. The domain decomposition is performed in the 
vertical direction into horizontal strips (Fig. 1). 

The second application studied is for the solution in 2D 
circular coordinates. In this case the angular 0 coordinate is 
naturally periodic and hence a Fourier expansion was used 
fo that direction. For the radial direction we again used a 
modified Chebyshev expansion. The domain decomposition 
is for the radial direction in the form of rings. Each ring 
contains more grid points in the 0 direction than the 
ring preceding it. This enables a relatively uniform spatial 
sampling and hence circumvents the disadvantage of 
circular grids to radially expand in the 0 direction. The 
stability of the numerical algorithm is improved by orders of 
magnitude over the single grid case. 

The matching of solutions between domains is based on 
requiring continuity of tractions and displacements and 
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FIG. 1. Decomposition of a medium into different domains. 
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that outward moving variables on the boundary remain 
unchanged. This is equivalent to the upwind condition in 
[ 11. In the following sections we first present the equations 
of motion in Cartesian coordinates and describe the 
solution algorithm and domain decomposition. Next, the 
equations in circular coordinates are derived. We then 
present a number of examples which test the accuracy of the 
multi-domain approach. 

EQUATION OF MOTION IN CARTESIAN COORDINATES 

Let x and y respectively denote the horizontal and 
vertical Cartesian coordinates. For an isotropic elastic 
solid undergoing infinitesimal deformation the equations of 
motion can be recast as a first-order system given by 

where 

and 

4 and 

A= 

(3) 

ti, denote the horizontal and vertical particle 
velocities respectively, crXX, CJ,,.~, and cry are the stress com- 
ponents, p is the density, A. and p are the rigidity and shear 
modulus, andf, andf, are the body forces per unit volume. 
The system (1) has previously been used by [4-63 for finite 
difference calculations and by [2] for a Fourier-Chebyshev 
method. 

Equation (1) needs to be supplied with appropriate 
boundary conditions. For y = 0 we use a free surface condi- 
tion which reads 

For the bottom of the grid y = L we apply an absorbing 
boundary condition to be discussed later. For the horizontal 
direction we assume periodic boundary conditions. In 
regions containing fluids the shear stresses oxV are zero and 
CJ xx = 0 yy = -p with p the pressure. The -equations of 
motion then become 

cx 

0 i 
z&j +B 
-P x 

where 

and 

fxlP 
f,lP 2 (4) 

0 1 

(5) 

(6) 
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with K the bulk modulus. The free surface condition for the 
fluid is p = 0. 

The application of boundary conditions at y = 0 and 
y = L and the requirement of continuity at subdomain 
boundaries is based on allowing only inward moving 
characteristic variables to be modified [7]. Based on a one- 
dimensional analysis in which only vertical derivatives are 
considered, Eq. (1) has the live characteristic variables ti, + 
(llP?J gx,,, c, + (ll~v,) cyy and G - (W + 2~)) gyJ 
[6, 31, where up = Jm and v,~ = fi are respec- 
tively the P wave and S wave velocities. These charac- 
teristics respectively move with the velocities + v,~, f up, and 
zero. For fluid regions, Eq. (4) has the three characteristic 
variables, ti, i p/pv, which move with velocities + up with 

up = fi and the zero characteristic ti,. 

Application of Boundary Conditions and Domain 
Decomposition 

In a typical calculation the operator on the right-hand 
side of Eq. (1) acts on a vector of variables (ti,, k,, 
0 .~.~, (T,, g.Xv)T to yield an output vector which we denote as 

-old (zi”,‘“, Zifd, err , a;.:, G:;),‘. This vector is then updated to 
satisfy an appropriate boundary condition or continuity 
condition as well as the requirement that the outward 
moving characteristics remain unmodified [ 73. The 
resulting vector is denoted by (fir”, ziy”‘, [rptw, az:w, c!J,~)‘. 
For the traction free boundary condition cXV = oYy =‘O at 
y = 0 the modification procedure implies [2],’ 

thejth subdomain (Fig. 1). When both thejth subdomain 
and (j+ 1)th subdomain are composed of solids, the 
variables ti,, ti,, rrXY, and crYY need to be continuous upon 
crossing the common interface. The modification procedure 
at y = y, then reads 

old 
Qxy(j+ I) 

P(i+ l)vs(j+ 1) 

( 1 1 
+ “eW ~- > 1 fs .x-v (94 

P(j)‘x(j) P(j+ lJv.Y(j+ 1) 

. new 
uY = 22;;; = ti;;;“+ ,) 

1 

=-[ 

gld 

2 
Yy(‘) + 

gld 
yy(J + 1) 

PWvp(j) P(i+ I)vp(j+ 1) 

( 1 1 
+ new ~_ P(i)vp(j) P~i+l)vp(i+ I) > 1 0 .,‘.,’ Pb) 

CJ “eW 
xy = ‘x.v( i) flew = anew 

dJ+ 1) 

= PWvs(J)P(i+ l)‘s(i+ 1) 

P(j)vs(j) + P(j+ Uvs(j+ I) 

@d 
v(j+l) I ‘2::4n 

P(j+ ljtis(j+ 1) > 
(9c) 

P(j)vs(j) 

CT 
new 
Y? = o;.;;“,, = a;.;Tj+ 1) 

= P(J)vp(i)P(i+ l)vp(i+ 1) 

PWvp(i) + P(j+ l)vp(i+ I) 

gld old 

x 2.i;;; + ,) - ti;;;, + 
yy(i+l) + y 

0 (. 

‘) 
P(i+ l)vp(j+ I) P(Avp(j) > 

. WI 

In addition the stress component oxx, which is not 
necessarily continuous, needs to be updated on both sides of 
the interface according to 

For the boundary y = L we used the absorbing condition 
that the inward characteristic is zero [6, 2-J. This gives 

For a domain containing a fluid the free surface boundary 
condition p = 0 implies 

(8) * new 1 
U.v 

= cold _ - 
Y po’d. 

PUP 

c “eW The continuity requirement between two fluid subdomains 
1 r is given by (9b) and (9d) with byy substituted by -p. In this 

case the horizontal particle velocity 8, needs not be con- 
In addition to boundary conditions, continuity conditions tinuous. Finally when thejth subdomain is occupied by a 
need to be satisfied upon crossing from one domain to the fluid and the (j + 1) th subdomain is occupied by a solid, the 
next. Let yj denote the vertical coordinate of the bottom of condition at the common interface is oXV = 0, while cYy (or 



358 TESSMER ET AL. 

--p on the fluid side) and tiY remain continuous. This 
implies 

1 . new u . old 
x(,+ I) = Qj+ 1) + 0 

old 

P(j+l)“s(j+l) 
xy(i+ I, 

1 old 

1’;;;) + $f + I) + A---- + 

0 
old 

=- yy(j+ I) 

2 P(i)“p(j) PCj+l)“p(,+l) 

( 1 1 
+ new ~_ P(i’UP(,) P(I+I)“p(i+l) > 1 CT vv (10) 

(T old 
yy(j+ 1) 

P(i+ l)“.di+ I) 

new 
%r(,+ I) = 

old 
%Y(, + I ) 

+1 

AU+ 1) 

Cj+1)+2P(j+l) 

The above procedure for the continuity at subdomain boun- 
daries which is based on [7] can be shown to be equivalent 
to the upwind condition in [ 1, Eq. (13.2.26), p. 4521. 

Spatial Discretization and Numerical Solution Method 

The numerical algorithm solves Eq. (1) or (4), based on 
a collocation method in which the solution is expanded by 
a Fourier expansion in the horizontal direction and a 
Chebyshev expansion within each subdomain in the vertical 
direction (Fig. 2). 

FIG. 2. A typical Fourier-Chebyshev grid in Cartesian coordinates. 

To improve stability for the vertical direction we use the 
coordinate transform described in [3,2]. A typical mesh is 
shown in Fig. 2. The Fourier expansions used for the x coor- 
dinate are of an odd number length to avoid the indeter- 
minacy of the Nyquist component. The numerical scheme 
allows for a different number of grid points in the horizontal 
direction in each of the subdomains. Whenever continuity 
conditions need to be applied on a boundary adjoining two 
subdomains, values on the subdomain with the smaller 
number of points are interpolated to the points of the sub- 
domain with the liner mesh using the Fourier transform 
itself as the interpolator. After application of the continuity 
condition, the values are interpolated back to the coarser 
mesh. These operations can be carried out with use of the 
fast Fourier transform (FFT). 

The boundary conditions are a free surface boundary 
condition at the top of the mesh y = 0 and an absorbing 
boundary at the bottom y= L. In addition, to avoid 
wraparound and spurious reflections from grid boundaries, 
an absorbing strip as described in [S] was added on the 
sides and bottom of the numerical mesh. 

The advancement of the solution in time was carried out 
by a fourth-order Taylor method. 

EQUATION OF MOTION IN CIRCULAR COORDINATES 

For circular coordinates the equations of motion can be 
written as a coupled system given by 

+ 
1+2/l. 
-24 

r ’ 

A 
- li, 
r 

(11) 

r and 0 respectively denote the radial and angular coor- 
dinates, ti, and ti, are the particle velocities in the r and 0 
directions, and cr,,, IS~*, and or0 are the stress components. 
The matrices A and B are given by (2) and (3). 
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FIG. 3. A typical multi-domain circular grid. 

For a fluid region the equations of motion are given by 

where A and B are as in (5) and (6). The characteristic 
variables for the circular coordinates are the same as for the 
Cartesian case when y is replaced by r and x is replaced by 
8. The interface conditions (7 t( 11) will also be the same. 

A typical multi-domain circular grid is shown in Fig. 3. 
For the solution we used a Fourier expansion for the 0 coor- 
dinate and the Chebyshev expansion in each subdomain for 
the r coordinate. 

EXAMPLES 

Two Equal Halfspaces in Juxtaposition 

For checking the accuracy of the grid matching procedure 
a comparison of the numerical results with an analytic solu- 
tion is performed. The medium is a uniform elastic halfspace 
with P- and S-wave velocities of 2000 m/s and 1155 m/s, 
respectively. The medium contains two matched grids (I 
and II). In Fig. 4 the dashed line indicates the numerical 
interface which is not a physical interface, since the material 
parameters do not differ. At the top of the upper grid a free 
surface boundary condition is implemented. The location of 

FIG. 4. Source-receiver geometry in a medium set up by two elastic 
grids. 

the vertical point force is denoted by S and the receivers by 
RI and R,. 

Figure 5 presents the comparison of numerical results 
with analytic solutions. The comparison of the vertical and 
horizontal displacement components at the two receiver 
positions show very good agreement. Therefore, we con- 
clude that the proposed procedure for matching two elastic 
grids is accurate and without artificial reflections. 

Wave Propagation in a Homogeneous Region in Polar 
Coordinates 

The first test of the solution algorithm in polar coor- 
dinates was of wave propagation in a homogeneous region. 
The problem configuration and the position of the source 
and the receivers is shown in Fig. 6. The multi-grid consisted 
of three concentric rings with outer radii of 87 m, 289 m, 
and 482 m, respectively. The radius of the inner cavity was 
5 m. The three rings contained 126 nodepoints in the radial 
direction while the inner ring contained 45 points in the 9 
direction, the middle ring contained 125 points in 8, and the 
outer ring had 225 points. The source was a directional force 
pointing radially with a Ricker wavelet with a highcut 
frequency of 50 Hz (i.e., a peak frequency at 25 Hz). 

Figure 7 shows amplitude snapshots at respective times 
t=O.O6s, t=O.l2s, t=O.l8s, t=0.24s, t=0.3s, and 
t = 0.36 s. The left-hand panels (Fig. 7a) represent radial 
particle velocity and the right-hand panels (Fig. 7b) repre- 
sent motion in the 8 direction. These snapshots show two 
concentric wavefronts of the pressure (P) wave and the 
shear (S) wave, respectively. It is clear from the figures that 
the inner cavity, which has a radius smaller than the 
wavelengths of the pulses propagating in the grid, has very 
little effect. Figures 8 and 9a and b compare numerically and 
analytically calculated time histories at the positions shown 
in Fig. 6. The comparison between the two figures appears 
very good and no artificial reflections from the subdomain 
boundaries are apparent. 
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FIG. 5. Comparison of analytical and numerical results at two receiver positions (R, and Rz of Fig. 4) for horizontal and vertical displacements. 

DISTANCE 
(IN METERS) 

-250 

-500 

/ 

-5oc 

Vr = 13rn m/r 

RECEIVER B 

RECEIVER A 

I I 
I -250 250 I 

DISTANCE 
(IN METERS) 

FIG. 6. Source-receiver geometry in a homogeneous medium set up 
by three concentric grids. 

Wave Propagation in a Region Containing Two Halfspaces in 
Planar Contact 

This example examines the solution algorithm for a struc- 
ture which contains a material discontinuity transversing 
the boundary between subdomains. The problem conligura- 
tion is shown in Fig. 10. The calculations used two sub- 
domains with outer radii of 84 m and 322 m, respectively. 
The radius of the interior cavity was 5 m. Each sub- 
domained contained 126 points in the radial direction. The 
inner region had 125 points in the angular direcfion, while 
the outer region had 225 points. 

Figure 11 represents amplitude snapshots at times 0.04 s, 
0.80 s, 0.12 s, 0.16 s, 0.20 s, 0.24 s, and 0.28 s, respectively. 
The figures on the left (Fig. lla) show the radial particle 
velocity while the figures on the right (Fig. llb) represent 
particle velocities in the 0 direction. The figures show well 
the six separate phases of the incident P and S waves, the P 
and S waves reflected from the material interface, and the P 
and S waves transmitted into the lower medium. 

Figure 12 shows a comparison between numerical and 
analytical solutions based on Cagniard’s technique (e.g., 
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FIG. 7. Snapshots of radial (a) and angular (b) particle velocities at the times given in the figures. 

t=300 ms 

t=360 ms 

[9]) for the source and receiver positions as shown in 
Fig. 10. The agreement appears to be very good. 

Acoustic Layer over an Elastic Halfspace 

In the final example an acoustic layer with a free surface 
boundary condition of 320 m thickness over an elastic 
halfspace is modeled. The material parameters in the water 

: 

NUMERICAL RESULT - 

ANALYTKAL RESULT 

FIG. 8. Comparison of analytical and numerical solution at receiver 
position A of Fig. 6. 

FIG. 9. Comparison of analytical and numerical solutions at receiver 
position B of Fig. 6: (a) radial; (b) angular displacement. 
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340 layer are up = 1500 m/s and, in the elastic halfspace, up = 
2000 m/s and U, = 1155 m/s. The density is constant. 

Figure 13 shows the source-receiver geometry. The pos- 
zoo- tions of the pressure source and the receivers were 40 m and 

70 m above the interface, respectively. In Fig. 14 a com- 

Shear Velocity = loo0 m/s ‘\, parison with the analytical solution at the three receivers 
(R,, R,, and R3) is given. The horizontal distances to the 

DISTANCE 
(IN METERS) 

-200 - 

Pressure Velocity = 2000 m/s 
Shear Velocity = 1500 m/s 

source are 200 m, 600 m, and 1000 m, respectively. The 
seismograms consist of direct and multiple reflected arrivals 
as well as a head wave and an interface wave. The agreement 
with the analytical solution appears very good. Thus also in 
the acoustic/elastic multi-domain situation the algorithm 
for matching computational grids yields very accurate 
results. 

DISTANCE 
(IN METERS) 

CONCLUSION 

We have presented a multi-domain Chebyshev-Fourier 

FIG. 10. Source-receiver geometry in an inhomogeneous elastic 
algorithm for the solution of the equations of dynamic 

medium with a planar reflector set up by two concentric grids. elasticity. We demonstrated the scheme for two-dimensional 

t=40 ms 

t=80 ms t=240 ms t=80 ms 

t=280 ms 
t=120 ms 

t=200 ms 

=240 ms 

FIG. 11. Snapshots of radial (a) and angular (b) particle velocities at the times given in the figures. 
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FIG. 12. Comparison of analytical and numerical solution 

receiver R, 

problems in Cartesian and polar coordinates. Comparisons 
between numerical and analytical solutions have shown 
very good lit with comparable accuracy to solutions with a 
single domain. No spurious reflections from the boundaries 
between the subdomains were observed. 

The multi-domain approach adds flexibility to global 
solution techniques such as the Chebyshev-Fourier algo- 
rithm used in this study. Of particular importance is the 
ability to change the grid size. In the context of seismic 
applications very often the wave velocities near the surface 
of the earth are much lower than the velocities at depth. 
Consequently a finer grid near the surface and a coarser grid 
at depth can effectively allow the use of a larger time step. 
For polar grids the multi-domain approach may yet be even 
more beneficial. Use of progressively more grid points in the 
0 direction with expanding r yields a relatively uniform 
mesh, hence counteracting the property of polar grids to 
expand radially. 

Modeling 

Analytical 

FIG. 14. Comparison of analytical and numerical results (pressure) at 
three receiver positions (I?,, R,, and R, of Fig. 13). 
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FIG. 13. Source-receiver geometry for the case of an acoustic layer 
overlaying an elastic halfspace. 

581,‘100/2-11 


